Skip to main content

Angela Yu: Sequential Effects: Irrational Superstition or Adaptive Behavior?

Movies Preview

movies
Angela Yu: Sequential Effects: Irrational Superstition or Adaptive Behavior?


Publication date 2009
Talk by Angela Yu of UC San Diego. Given March 17, 2009 to the Redwood Center for Theoretical Neuroscience at UC Berkeley.

Abstract:
Just as visual illusions reveal principles and mechanisms underlying natural visual processing, "cognitive illusions" can provide similar insight into the computations underlying decision-making. In a variety of behavioral tasks involving randomized sequences of stimuli, subjects exhibit an odd "sequential effect": their responses are facilitated by chance runs of repetitions and alternations in stimulus identity, and are hampered by violations of such transient local patterns. Such behavior is sub-optimal in the context of the task, since these transient patterns are spurious and have no true predictive power of future stimuli. We hypothesize that this apparently superstitious behavior may in fact reflect the engagement of adaptive mechanisms that are critical for responding to environments containing statistics that change over time. We use a normative Bayesian framework to show that a prior belief in changing statistics is sufficient to produce the type of sequential effects observed in subjects' behavior. The Bayesian algorithm is shown to have an approximately linear dependence on the history of past observations, where the dependence decays exponentially into the past; this exponential decay is also apparent in human and monkey behavior, as we found by re-analyzing data from published studies. We show that the necessary computations can be implemented by neurons with dynamics previously thought to underlie a variety of sensory processing and decision making computations. Our work provides a unifying account of how decision-making SHOULD adapt to a changing environment, a functional theory for WHY subjects exponentially discount the past, as well as a principled hypothesis of HOW neurons can implement the necessary computations.

Note: Due to technical problems, at 54:40 into the talk, about 4 minutes of the video had to be excised (are not included in this video).

comment
Reviews

There are no reviews yet. Be the first one to write a review.
SIMILAR ITEMS (based on metadata)
Community Video
by Redwood Center for Theoretical Neuroscience
movies
eye 288
favorite 0
comment 0
Community Video
movies
eye 255
favorite 0
comment 0
Community Video
by Redwood Center for Theoretical Neuroscience
movies
eye 286
favorite 0
comment 0
Community Video
movies
eye 388
favorite 0
comment 1
( 1 reviews )
Community Video
movies
eye 264
favorite 0
comment 0
Community Video
by Redwood Center for Theoretical Neuroscience
movies
eye 196
favorite 0
comment 0
Community Video
by Redwood Center for Theoretical Neuroscience
movies
eye 531
favorite 0
comment 0
Community Video
movies
eye 398
favorite 0
comment 1
favoritefavoritefavoritefavorite ( 1 reviews )
Community Video
by Redwood Center for Theoretical Neuroscience
movies
eye 714
favorite 0
comment 0
Community Video
by Redwood Center for Theoretical Neuroscience
movies
eye 294
favorite 0
comment 0